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Foundation Models Roles &

Directly produce action or state

Pre-trained learners of states, actions, rewards, and transaction dynamics

Foundation

Models

: Perform long-term reasoning, control, search, and planning

: Solve tasks faster and generalize better
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A Short Background of Sequential Decision Making &

* Learning from interactive experience (agent < environment)

* Markov Decision Process (MDP, Puterman, 1994)
M =< S5,ART,uy >
e S:state . S - A(4)
* A:action (behavior) So: initial state Sy~u
* R:rewardR: S XA - A(R)
T.SXA - A(S)
e W:initial state distribution u € A(S)

trajectory (episode):

state-action-reward tuples

. : discount factory € [0, 1)
4 4 Tt = (Sp ap, I't)



Goal and Method
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Maximize the cumulative rewards of a policy through trial-and-error interactions with the env.

Reward: total discounted sum of rewards R(7)

H
R = ) 7',
t=0

Imitation Learning and Behavior Cloning (BC)
Train a policy m as close as m*(expert demonstrations Dgy.)

BC: directly map state to action via learning a policy

Lgc () = [E(s,a)~DRL [—log(n(als))]



H
T(m) = EL) y'r,|m,M]
t=0

Policy Gradient-based Methods

T (m)

Policy Gradient
|K (Sp,ay)
Value-based Methods
Q" (st ar)
Action-Value Function
Q* (St; at)
Actor-Critic Methods

QT[ (Stf at) A(Str at) Qn (Str at)
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Other Notes -
Foundation Models for Decision Making

* Self-supervised Learning on diverse data Modeling p(7) from t~Dg,

* Task-specific Adaptation (Transfer Learning or Prompting)
* Learn an algorithm from task specific RL dataset Dgy,

need to estimate R and T from dataset samples -> Learn a Model

without R and 7 = learn policy and R via interactions

. learn multimodal, multitask, and generalist interactive agents



PHILIPS

Foundation Model Role 1: Generation Capability =

Conditional Generative Models

Models of Behavior Models of Improvement Models of the World Models of Long-Term Future

AV £y ) R —
sarns o BEE  [sars| [sans| o

Skill Discovery . o Model-Based RL Trajectory Optimization
Decision Transformer Algorithm Distillation Trajectory Transformer Diffuser, UniPi

Fig. 3. lllustrations of how conditional generative models can model behaviors, improvements, environments,
and long-term futures given a trajectory 7 ~ Dgy.. Dark blue indicates transitions with higher rewards. Models
of behavior (Decision Transformers [Lee et al. 2022]) and self-improvement (Algorithm Distillation [Laskin
et al. 2022]) require near-expert data. Models of the world (Trajectory Transformer [Janner et al. 2021]) and
long-term future (UniPi [Du et al. 2023b]) generally require data with good coverage.
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Foundation Model Role 1: Generation Capability &

Conditional Generative Models
probability modeling of the trajectory distribution p(7)
from an interactive dataset T~Dpy,
: (1) Action (behaviors model)

(2) Reward & State (environment dynamics, a.k.a. world model)

: factorization of p(t) — conditional probabilities multiplication

L
p(x) =| [pCalx<, )

A A

=1
: represent different trajectory-level properties such as goals,

skills, and dynamics constrains
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Foundation Model Role 1: Generation Capability &

Conditional Generative Models

: factorization of p(t) — conditional probabilities multiplication

L
p(x) = 1_[ p(x|x<p)
=1

L
Lim(p) = Ex-p [z —log P(xz|x<z)‘
=1
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Foundation Model Role 1: Generation Capability &

Conditional Generative Models of & Pretraining

H
LLM (T[) o ]ET~DRL |:2 _log T[(atlT<t; St)
t=0

Models of Behavior I Models of Improvement

4
sans

Skill Discovery
Decision Transformer

Models of the World Models of Long-Term Future
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]
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Fig. 3. Illustrations of how conditional generative models can model behaviors, improvements, environments,
and long-term futures given a trajectory ¢ ~ Dgy.. Dark blue indicates transitions with higher rewards. Models
of behavior (Decision Transformers [Lee et al. 2022]) and self-improvement (Algorithm Distillation [Laskin
et al. 2022]) require near-expert data. Models of the world (Trajectory Transformer [Janner et al. 2021]) and
long-term future (UniPi [Du et al. 2023b]) generally require data with good coverage.

Image Credit: Reference 1
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Foundation Model Role 1: Generation Capability &

Conditional Generative Models of
 Policy that can depend on the history of interaction m(a;|T<t, St)
history (T, S¢) and the next action a;

* An additional conditioning variable that captures trajectory-level information

H
LLM (T[) — ]ET~DRL lz _log 7T(atlél-<t) Stl )
t=0

* Generalist Agents trained on massive behavior datasets

e Large-scale Online Learning



World (Environment Dynamics)

* JIdea

* One-Step Prediction

Transition Behavior Reward
Dynamics Policy Function

------------------------------------------------------------------------

------------------------------------------------------------------------

* Long-Term Future
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Foundation Model Role 2: Representation Capability E3

* Plug-and-play style of knowledge compression and transfer
* Representation learning with task specifiers

* Learning representation for Sequential Decision Making

Model-Based Representations = Temporal Contrastive Learning Masked Auto-Encoders Offline RL Pretrainng

q) Contrastive Loss d) BERT;, Denoise ¢ r+V(s’)
[s.alns Telars [sans

Latent Dynamics, . P ; Multi-Task Q-L. i
o ) Contrastive Predictive Coding ulti-las eaming,
Bisimulation BERT for RL Any Offine RL Algorithm

Fig. 4. lllustrations of different representation learning objectives such as model-based representa-
tions [Nachum and Yang 2021], temporal contrastive learning [Oord et al. 2018], masked autoencoders [Devlin
et al. 2018], and offline RL [Kumar et al. 2022], on a trajectory 7 ~ Dgy, specifically devised for sequential
decision making.

Image Credit: Reference 1



Foundation Model Role 2: Representation Capability

* Model-based Representations
Learning a latent state or action space of an env. by “clustering” states and actions

that yield similar transition dynamics

I(St+1|T<ts , )
R(re|T<t, , )
F(Q( |T<tr ’ at)

» Temporal Contrastive Learning

 Masked Autoencoders
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Foundation Model Role 3: Agents and Environments E3

* Learning from environment feedback produced by humans, tools, or the real
world; Building new applications

 Example: Optimize ChatGPT via RLHF

Example: Generate API Calls (to invoke external tools and receive responses as

feedback to support subsequent interaction)

 Example: Prompt ChatGPT
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Foundation Models Significance

Directly produce action or state

Pre-trained learners of states, actions, rewards, and transaction dynamics

Memorizing and Reasoning

Guang-Bin Huang
This is the reason why | called the intelligent revolution, exactly as Watt improved steam

engine triggered Industrial Revolution

)

Like Reply 1w
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A Study Case: Safety Critical System

: ConBaT: Control Barrier Transformer for Safe Policy Learning
: Yue Meng 1], Sai Vemprala 12, Rogerio Bonatti 21, Chuchu Fan 2 Ashish Kapoor 14

: MIT, Microsoft Research



\_ 1/
Background and Goal

Typical learning from demonstrations

NN

Expert demonstrations Agent deployment:
imperfect policy

» Safety Requirement Scenario (e.g., Safe Navigation)

* Generate safe actions by learning a safe policy g te: S = A

Image Credit: Reference 2
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Previous Method and Proposed Method =

N\

 Expert Demonstrations with optimized safety constrains
e Cons: unable to explicitly avoid unsafe actions; without unsafe behaviors

e Learn from safe and unsafe demonstrations
* Learn a safety critic on top of the control policy

Typical learning from demonstrations ConBaT: learn from safe & unsafe demonstrations

= A
/ [ 2 é Safety critic »
€ ; Control Q! ' > C I poli #
k Bailey ontrol policy 6
a '

Expert demonstrations Agent deployment: Safe and unsafe demonstrations Agent deployment:
imperfect policy policy update using critic

Figure 1: (Left) An agent trained to imitate expert demonstrations may just focus on the end result of the task
without explicit notions of safety. (Right) Our proposed method ConBaT learns a safety critic on top of the
control policy and uses the critic’s control barrier to actively optimize the policy for safe actions.

Image Credit: Reference 2
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Base Architecture: Perception-Action Causal Transformer (PACT)

e Partially observable Markov decision process

State-action tuples t; == (S, a;) and t € [0, T]

» State-action pairs from expert demonstrations to autoregressively train both a world

model and a policy network, using imitation learning for its training objectives.

Image Credit: Reference 3
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Predicted values/tokens -----—-—- g/?
‘
Prediction heads -----——

prmer (PACT)

Base Architect

Output embeddings -------1

. Pa rtla I |y Observ Transformer blocks & & a0

State-action tup

Causal Transformer

* State-action pair e e e e sl el 2N both a world
| Tokenizers for states and actions . :
model and a poli t t t t (N Objectives.

Rawdata - St az St+1 Atyq

Fig. 2: Perception-Action Causal Transformer (PACT) architecture.
a and § are autoregressively predicted actions and states. The
tokenizer does not share information across data, and applies
operations individually on raw data inputs. The black and green
arrows represent predictions heads for actions and future state tokens
respectively.

Image Credit: Reference 3



Perception-Action Causal Transformer (PACT)

A A
Predicted values/tokens Atiq St42

Prediction heads

Output embeddings

-

Transformer blocks

Causal Transformer

Input tokens St ag St+1

t t t

Tokenizers for states and actions

t t t t t

Raw data ag—q St az St+1 Qi1

Fig. 2: Perception-Action Causal Transformer (PACT) architecture.
a and § are autoregressively predicted actions and states. The
tokenizer does not share information across data, and applies
operations individually on raw data inputs. The black and green
arrows represent predictions heads for actions and future state tokens
respectively.

Image Credit: Reference 3
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raw observation s; and action a; data
%

compact tokens: s, a; € RY
Ts(s) — st
Ty(ap) — at

X(sy,ag, ..., sT,ar) = (sd,ag, ..., st,ar
7T(St+) — a;

B(s¢,ar) = Steq
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This Work

Fig. 2: Definitions of safe and unsafe sets. In safe demonstrations
75 all state embeddings are labeled as safe. In contrast, in unsafe
trajectories T, only the first (L — 27") embeddings are assumed to

. TWO SetS O_[_- traj eCtO ri es | N th iS WO rk: be safe, where T is the Transformer context length, and only the last

embedding is labeled as unsafe.

(1) T € ). — obey the desired safety constraints at all time steps
(2) T € ),y — lead to an

* Mimic the action distribution from good demonstrations ),¢ (Ss)

» Avoiding sequences of actions that lead to the unsafe terminal states of ), (Sy)
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Innovation — Control Barrier Critic >

— predict safety scores for the current and future expected states
e C:sf - ¢

* (r (s¢,af) = Cey1

Causal Transformer x N

* Vs €S, > h(s)=0 e R e
t t t

S ag St+1 Atyq

e VseS, = S—% h(s)<O

S

h(s) = Oh(s)/ds - f(s,7*(s)) > —ah(s) with a >0

Image Credit: Reference 2



PHILIPS

Training Critic Loss &

Training the CBC involves three loss terms. First, we employ a classification loss L. to enable the
CBC to learn the safe set boundary:

4)

where o (x) = max(z, 0) and -y is a margin factor that ensures numerical stability in training. The
second loss enforces smoothness on the CBC values over time:

Li= E_ [0 (1=0)C(s]) = C(s/11))] 5)
s;'_~8+
where a controls the local decay rate. Note that this loss is asymmetrical as it only penalizes fast
score decays but permits instantaneous increases, as a fast-improving safety level does not pose a
problem. The final loss ensures consistency between the predictions of both critics C' and CY:

[|Cs(sf,af) — Csi0)|] ©6)

Li=

E_
3;{'~S+

Theoretically, one could use a single critic C coupled with a world model ¢ to generate ¢(s™,a™) —
8,1 and then estimate future CBC score as C(5;,,). We found it empirically helpful to use a
separate critic head C to predict future CBC scores directly from the output embeddings, as it
facilitates the action optimization process described in Section [2.2.2] The total training loss is
Lo = AcLe+ AsLs + Ay Ly, with relative weights .

Image Credit: Reference 2
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Figure 2: (a) The ConBaT architecture - a causal Transformer operates on state and action tokens (s’, a’)
to produce embeddings (s™,a™). A policy head 7 computes actions given state embeddings, and a current
state critic C' computes a safety score. Both state and action embeddings are processed by a world model ¢ to
compute the future state token, and by the future critic C'¢ to produce a future safety score. (b) The deployment
process for ConBaT involves a feedback loop. The future critic evaluates action proposals from the policy head
to check safety of resultant states. The red arrows show the flow of gradients that allow optimizing for the safe
action that results in a desired cost characteristic. The optimal action o™ is used as the final command.
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Key Point — Optimize Actions to Improve Safety S

Cost Ce41 < 0

Policy

ction®

A Observatio
|f Cf fta < O: proposal
. Optimal

actlon
.+ Aa* = a; -

: gradient w.r.t.

Aa® = argminy,1 ,0)



Databases (Simulated Environment)

-25
0 5 %0 0 50 —40  -20
x (m) X (m) x (m)

(a) F1/10 (playground) (b) F1/10 (Silverstone) (c) F1/10 (Austin) (d) MuSHR environment

Figure 3: Simulation environment visualization.

e 2D Racing Tracks (Playground, Silverstone, and Austin)

: distance and angle; : steering angle

: 2D LiDAR scan; : steering angle

Image Credit: Reference 2
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Evaluation Metrics &

 The percentage of trajectories in the test set that end in a crash within the cut-off time

horizon

 The average length of deployment trajectories, expressed in number of time steps

before crashing or time-out if no crash occurs.
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Databases (Simulated Environment) S

PACT PACT-FT ConBaT PACT PACT-FT ConBaT

Playground 100 - 0.0 Playground 175.45 - 1000
Silverstone 100 96.88 0.0 Silverstone  61.57 439.28 1000

Austin 100 100 61.7 Austin 57.11 165.12 678.14

(a) F1/10 (playground) (b) F1/10 (Silverstone) (c) F1/10 (Austin)

(a) Collision Rate (%) - lower is better (b) Avg. Trajectory Length - higher better

Figure 3: Simulation environment visualization.

Table 1: Comparison of PACT and ConBaT for the F1/10 task. ConBaT outperforms PACT

: 1K demonstrations, each 100 timesteps long

: 128 trajectories for a maximum of 1000 timesteps

Image Credit: Reference 2
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Databases (Simulated Environment) S

Mushr

% of trajectories that end in collision Average Trajectory Length
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Figure 5: ConBaT outperforms classical MPC and several learning-based methods on safe navigation in the
2D MuSHR car domain.

(d) MuSHR environment

: 10K trajectories

: 128 trajectories for a maximum of 5000 timesteps

Image Credit: Reference 2



Can we integrate or consider Fuzzy Control into this system?

Can we design a new framework also with the consideration of maximizing

the reward?



Foundation Models for Decision Making: Problems, Methods, and Opportunities

ConBaT: Control Barrier Transformer for Safe Policy Learning

PACT: Perception-Action Causal Transformer for Autoregressive Robotics Pre-Training
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