

Image Quality Assessment and Perceptual Optimization

No-reference IQA via Non-local Modeling

Shuyue Jia M.Phil. Student

April 2023

Learning Objectives

- What is Objective Image Quality Assessment (IQA)?
- Why do we need IQA with Perceptual Optimization?
- Current Related Work
- A Proposed Non-local Modeling method for IQA

What is Image Quality Assessment (IQA)? Synthetic Distortion

Reference/Pristine Image

Distorted Image by Gaussian Noise

Image Credit: Shuyue Jia and Ka-Po Chan

Reference/Pristine Image

Motion Blur due to low shutter speed

Image Credit: Shuyue Jia and Ka-Po Chan

Problem Definition

Definitions

- *Natural Image*: images captured by optical cameras
- *Fidelity:* keep the content of the distorted images (semantic information) unchanged
- Image Quality (Fidelity) Assessment: measure the input image's visual (perceptual) quality
- *Visual Quality and Perceptual Optimization*: people's overall subjective visual experience when viewing images
- Synthetic Distortion: synthetic distortions added to the whole area of image (mainly global uniform distortions)
- *Authentic Distortion:* images captured in the wild include varies contents and diverse types of distortions (global uniform distortions + non-uniform distortions in local areas)

Image Quality Assessment Category

- Full-Reference IQA: with Reference/Pristine Image
- *Reduced-Reference IQA*: with partial information from Reference Image, *e.g.*, a subset of features
- **No-Reference (Blind) IQA**: without any information from Reference Image

Measurements

- Label: Mean Opinion Score (MOS) vs. Model Output: one scalar score
- Pearson Linear Correlation Coefficient (PLCC): prediction accuracy
- Spearman Rank-order Correlation Coefficient (SRCC): prediction monotonicity

"If you can't measure it, you can't improve it." (Peter Drucker)

Reference/Pristine Image

Image Credit: Shuyue Jia and Ka-Po Chan

Motion Blur due to low shutter speed

Automatic Image Quality Assessment

Image Credit: TID2013 Database

Distorted Image

Performance Evaluation of Image Processing Systems

by a Full-Reference IQA Method

FR-IQA Method

 Predictive Coding Based Multiscale Network with EncoderDecoder LSTM for Video Prediction

 130% ~ - +

Fig. 6. Visualization examples on the KTH datasets. We use 10 frames as input to predict next 30 frames. The other results are obtained from [49]. Zoom in for a better view.

B. Experimental results

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59 60

The KTH is one of the most commonly used KTH datasets for task of video prediction. It is very popular due to its moderate complexity of scene and event (the dataset contains only 6 action categories on a simple backgrounds). Similar to previous works, we use person 1-16 for training and person 17-25 for testing, and use 10 frames as input to predict the next 30 frames. The quantitative evaluation results are shown in Table II. The results of previous works are excerpted from [25], [48] and [49]. As shown in the table, our method achieve comparable or better performance compared with the state-of-the-art methods. In addition, our model converges fast, which only takes about 30 epochs to achieve good performance. Figure 6 shows the visualization examples, our method can also achieve good visual results, while the Conv TT-LSTM [50], which obtains the highest SSIM score, shows poor performance on the qualitative evaluation. The mismatch between quantitative and qualitative assessments remains an unsolved problem for video prediction tasks.

Fig. 7. Visualization examples on the MNIST datasets. We use 10 frames as input to predict next 10 frames. In each group, the first row indicates the ground truth frames and the second row indicates predicted frames. Zoom in for a better view.

Moving MNIST The Moving MNIST is an early popular synthetic dataset for video representation learning. Its scenarios and events are very simple, each sequence is 20 in length and shows how 2 digits move at a constant speed and bounce within a 64×64 box. Similarly, we use 10 frames as input to predict the next 10 frames. Table III shows the quantitative evaluation results on SSIM and MSE, the results of previous works are excerpted from [57] and [48]. Figure 7 shows the visualization examples, we have tried our best to search the demonstrated examples of previous works, but unfortunately none have been found, so we only present our results in the figure. Since the scenes and events are simple, we did not use adversarial training to sharpen the generated images to save training overhead. Nevertheless, we can still achieve good performance from the perspective of qualitative evaluation. Actually, most of the background pixels in this dataset are zeros. If we set a threshold and change the predicted pixels smaller than the threshold to zeros, we will get higher accuracy

The

pictu

can't

displ

ayed

re

be

×

Optimizing Image Processing Systems (Model Parameter Optimization)

by a Full-Reference IQA Method

• Signal Fidelity Approaches

Mean Squared Error (MSE) and Peak Signal-to-Noise Ratio (PSNR)

 I_p : number of pixels in the image; x_i and y_i are the i^{th} pixels of the ref. and dis.

MSE =
$$\frac{1}{I_p} \sum_{i=1}^{I_p} (x_i - y_i)^2$$
, PSNR = $10 \times \log_{10} \left(\frac{255^2}{\text{MSE}}\right)$.

• Bottom-Up Approaches (Error Sensitivity Framework)

separately model each basic module of Human Visual System (HVS)

Image Credit: <u>SSIM Paper</u> (Prof. Zhou Wang)

Fig. 1. A prototypical quality assessment system based on error sensitivity. Note that the CSF feature can be implemented either as a separate stage (as shown) or within "Error Normalization."

• Top-Down Approaches

directly imitate the function of HVS as a single model

Representative Work: (1) Structural Similarity (SSIM) (2) Visual Information Fidelity (VIF) (3) Learned Perceptual Image Patch Similarity (LPIPS)

• Top-Down Approaches - Structural Similarity (SSIM)

Fig. 3. Diagram of the structural similarity (SSIM) measurement system.

FIGURE 5 Separation of luminance, contrast and structural changes from a reference image **x** in the image space. This is an illustration in three-dimensional space. In practice, the number of dimensions is equal to the number of image pixels.

 $SSIM(\mathbf{x}, \mathbf{y}) = \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)} \quad \begin{array}{l} \sigma: \text{ Standard Deviation} \to \mathbf{cor} \\ (\mathbf{x} - \mu_x)/\sigma_x: \text{ normalization} \end{array}$

 μ : Mean Intensity \rightarrow luminance σ : Standard Deviation \rightarrow contrast $(\mathbf{x} - \mu_x)/\sigma_x$: normalization Correlation of Normalized Signals \rightarrow structure

Credit: Wang et al., Image Quality Assessment: From Error Visibility to Structural Similarity, In IEEE T-IP'04

• Top-Down Approaches - Visual Information Fidelity (VIF)

• Top-Down Approaches - Learned Perceptual Image Patch Similarity (LPIPS)

Figure 3: Computing distance from a network (Left) To compute a distance d_0 between two patches, x, x_0 , given a network \mathcal{F} , we first compute deep embeddings, normalize the activations in the channel dimension, scale each channel by vector w, and take the ℓ_2 distance. We then average across spatial dimension and across all layers. (Right) A small network \mathcal{G} is trained to predict perceptual judgment h from distance pair (d_0, d_1) .

Based on **Deep Features** instead of Statistics

Credit: Zhang et al., The Unreasonable Effectiveness of Deep Features as a Perceptual Metric, In CVPR'18

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2020.3045810, IEEE Transactions on Pattern Analysis and Machine Intelligence

The pictu

re

be

can't

displ

ayed

'ape

SUBMITTED TO IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE

Image Quality Assessment: Unifying Structure and Texture Similarity

Keyan Ding, Kede Ma, Member, IEEE, Shiqi Wang, Member, IEEE, and Eero P. Simoncelli, Fellow, IEEE

Abstract—Objective measures of image quality generally operate by making local comparisons of pixels of a "degrade" image to those of the original. Relative to human observers, these measures are overly sensitive to resampling of texture regions (*e.g.*, replacing one patch of grass with another). Here we develop the first full-reference image quality model with explicit tolerance to texture resampling. Using a convolutional neural network, we construct an injective and differentiable function that transforms images to multi-scale overcomplete representations. We empirically show that the spatial averages of the feature maps in this representation capture texture appearance, in that they provide a set of sufficient statistical constraints to synthesize a wide variety of texture patterns. We then describe an image quality method that combines correlation of these spatial averages ("texture similarity") with correlation of the feature maps ("structure similarity"). The parameters of the proposed measure are jointly optimized to match human ratings of image quality, while minimizing the reported distances between subimages cropped from the same texture images. Experiments show that the optimized method explains human perceptual scores, both on conventional image quality databases, as well as on texture databases. The measure also offers competitive performance on related tasks such as texture classification and retrieval. Finally, we show that our method is relatively insensitive to geometric transformations (*e.g.*, translation and dilation), without use of any specialized training or data augmentation. Code is available at https://qithub.com/dingkeyan93/DISTS!

Index Terms—Image quality assessment, structure similarity, texture similarity, perceptual optimization.

Extension: Ding et al., Comparison of Full-Reference Image Quality Models for Optimization of Image Processing Systems, In IJCV'21^{Philips - Confidentia}

Framework of Reduced-Reference IQA

Credit: Wang et al., Reduced- and No-Reference Image Quality Assessment, In IEEE Signal Processing Magazine'11

Current Related Work of No-Reference / Blind IQA

Distortion-Specific Modeling

aware the image distortion types ightarrow build distortion-specific models

General NR-IQA Modeling (1) Natural Scene Statistics Modeling Spatial Domain and Transform Domain (2) Human Visual System Modeling CNN modeling methods, assisted with visual importance information, reference images' information during training, ranking-based methods, graph representation learning, etc. (3) Codebook-based Modeling constructing a codebook

Selected Recent Progress on No-reference IQA

CNN-based Methods [1]

Ranking-based Methods [2]

Transformer-based Methods [3]

Credit:

[1] Bosse et al., Deep Neural Networks for No-Reference and Full-Reference Image Quality Assessment, In IEEE TIP'18

[2] Liu et al., RankIQA: Learning from Rankings for No-reference Image Quality Assessment, In ICCV'17

[3] Golestaneh et al., No-Reference Image Quality Assessment via Transformers, Relative Ranking, and Self-Consistency, In WACV'22

Challenges

- Local Modeling (Convolutional Neural Networks):
 - ✓ Translation Invariance (Pooling)
 - ✓ Translation Equivalence (Convolution)
 - ✓ Sharable Fewer Parameters (Weight Sharing)
- Limitations:
 - ✓ Small-sized Receptive Field → Extracted features are too local
 - \checkmark Parameters Fixed across the whole image \rightarrow Image content is equally treated
 - \checkmark Lack of Geometric and Relational Modeling \rightarrow Missing complex relations and dependencies

Motivation

Local Feature Extraction

Non-local Dependency

✓ HVS is <u>adaptive to the local content</u>

 \rightarrow Local feature extraction via a pre-trained CNN

✓ HVS perceives image quality with long-range dependency constructed among different regions

 \rightarrow *Non-local feature extraction* for long-range dependency and relational modeling

- ✓ **Local Modeling**: encodes spatially proximate **Local Neighborhoods**.
- Non-local Modeling: establishes Spatial Integration of Information by Long- and Short-Range Communications with different Spatial Weighting Functions.

Non-local Behavior

Object-to-Pixel Modeling Region Feature Extraction

Non-local **Dependency & Relational** Modeling

Semantics and Content Understanding

Figure 3.1: The non-local behavior of the long-range dependency and relational modeling. (a) The plane image with a query on wings. (b) The boat image with a query on nearby river bank. (c) The Statue of Liberty image with a query on the lady. (d) The shrooms image with a query on one shroom. (e) The butterfly image with a query on the wing. (f) The Lafayette Square, Washington, D.C. image with a query on flowers.

(e)

Figure 3.2: Selected demonstrations of the non-local behavior and long-range dependencies with regard to the cropped image patches from the illustrated images. The details of Figure (a) to (p) are described in the thesis.

Non-local Modeling: establishes the Spatial Integration of Information by Long- and Short-

Range Communications with different Spatial Weighting Functions.

(d)

Image Credit: TID2013 and LIVE Databases

Definition

Non-Local Recurrence

Figure 4.9: Demonstrations of the global distortions (b/f: GB, c/g: CC, d/h: PN) contaminating the Statue of Liberty and George Rogers Clark Memorial images. Figure (a) and Figure (e) are reference images from the CSIQ database.

Global Distortion

Figure 4.11: Demonstrations of the local distortions (b/e/h: non-eccentricity patch and c/f/i: color block). Figure (a), Figure (d), and Figure (g) are reference images from the KADID-10k database.

Local Distortion

Global Distortion: globally and uniformly distributed distortions with non-local recurrences over the image.

Local Distortion: local nonuniform-distributed distortions in a local region.

Superpixel Segmentation

Figure 4.2: The superpixel vs. square patch representation (with size of $\approx 32 \times 32$) of the plane image from the TID2013 database.

Superpixel vs. Square Patch

- ✓ Adherence to boundaries and visually meaningful
- ✓ Accurate feature extraction

Image Credit: TID2013 Database

Superpixel Segmentation

Reference

Gaussian Blur

Gaussian Noise

Superpixel Segmentation

(d)

Reference

Gaussian Blur

Gaussian Noise

Figure 4.2: The superpixel vs. square patch representation (with size of $\approx 32 \times 32$) of the plane image from the TID2013 database.

(c)

NLNet Architecture

(i) Image Preprocessing

Experimental Setup

Databases:

✓ LIVE, CSIQ, TID2013, and KADID-10k

Experimental Settings:

- ✓ Intra-Database Experiments:
 - \rightarrow 60% training, 20% validation, and 20% testing, with `random` seeds from 1 to 10
 - \rightarrow The median SRCC and PLCC are reported.
- ✓ Cross-Database Evaluations:
 - \rightarrow One database as the training set, and the other databases as the testing set
 - \rightarrow Report the last epoch's performance

Screen Content

Natural Images

Figure 1.1: Natural images and a screen content image from the constructed databases. (a) LIVE Database [13] (b) CSIQ Database [14] (c) TID2013 Database [15] (d) KADID-10k Database [16].

Table 4.1: Brief summary of the LIVE, CSIQ, TID2013, and KADID-10k databases.

Database	LIVE [13]	CSIQ [14]	TID2013 [15]	KADID-10k [16]
Num. of Reference Images	29	30	25	81
Num. of Distorted Images	779	866	3,000	10,125
Num. of Distortion Types	5	6	24	25
Num. of Distortion Levels	$5\sim 8$	$3\sim 5$	5	5
Annotation	DMOS	DMOS	MOS	MOS
Range	[0, 100]	[0, 1]	[0, 9]	[1, 5]

Intra-Database Experiments

Table 4.2: Performance comparisons on the LIVE, CSIQ, and TID2013 databases.Top two results are highlighted in bold.

	Method	Lľ	VE	CS	SIQ	TID	2013	
		SRCC	PLCC	SRCC	PLCC	SRCC	PLCC	
	BRISQUE (2012) [10]	0.939	0.935	0.746	0.829	0.604	0.694	
	CORNIA (2012) [104]	0.947	0.950	0.678	0.776	0.678	0.768	
	M3 (2015) [105]	0.951	0.950	0.795	0.839	0.689	0.771	
	HOSA (2016) [103]	0.946	0.947	0.741	0.823	0.735	0.815	
	FRIQUEE (2017) [90]	0.940	0.944	0.835	0.874	0.68	0.753	
	DIQaM-NR (2018) [35]	0.960	0.972	-	-	0.835	0.855	
	DB-CNN (2020) [64]	0.968	0.971	0.946	0.959	0.816	0.865	
	HyperIQA (2020) [65]	0.962	0.966	0.923	0.942	0.729	0.775	
SOTA	GraphIQA (2022) [86]	0.968	0.970	0.920	0.938			
JUIA	TReS (2022) [87]	0.969	0.968	0.922	0.942	0.863	0.883	Fewer Training Data
Transformer	NLNet	0.962	0.963	0.941	0.958	0.856	0.880	↓ 20% Total Data
							1	Highly Competitive Performance

Table 4.3: Performance comparisons on the KADID-10k database.

Top two results are highlighted in bold.

								\frown	\mathbf{N}
Method	BRISQUE [10]	CORNIA [104]	HOSA [103]	InceptionResNetV2 [16]	DB-CNN [64]	HyperIQA [65]	TReS [87]	NLN	Jet
SRCC	0.519	0.519	0.609	0.731	0.851	0.852	0.859	0.84	46
PLCC	0.554	0.554	0.653	0.734	0.856	0.845	0.858	0.85	50
							i		/

Cross-Database Settings and Evaluations

TT 1 1 1 0	a 1,1	C	•
Table 4.9.	('ross-database	nertormance	comparisons
14010 1.7.	CIUSS addubuse	periormanee	comparisons.

Training	Ι	LIVE		SIQ	TID2013		
Testing	CSIQ	TID2013	LIVE	TID2013	LIVE	CSIO	
BRISQUE (2012) [10]	0.562	0.358	0.847	0.454	0.790	0.590	
CORNIA (2012) [104]	0.649	0.360	0.853	0.312	0.846	0.672	
M3 (2015) [105]	0.621	0.344	0.797	0.328	0.873	0.605	
HOSA (2016) [103]	0.594	0.361	0.773	0.329	0.846	0.612	
FRIQUEE (2017) [90]	0.722	0.461	0.879	0.463	0.755	0.635	
DIQaM-NR (2018) [35]	0.681	0.392	-	-	-	0.717	
DB-CNN (2020) [64]	0.758	0.524	0.877	0.540	0.891	0.807	
HyperIQA (2020) [65]	0.697	0.538	0.905	0.554	0.839	0.543	
NLNet	0.771	0.497	0.923	0.516	0.895	0.730	

Similar Distortions TID: More Distortion Types & Levels

 Table 4.4: The average SRCC and PLCC results of the individual distortion type on the LIVE database. Top two results are highlighted in bold.

the LIVE data	base. Top	two resul	lts are hi	ghlighted	in bold.	
SPCC	Global Distortion				Local Distortion	Noisy
SKCC	JPEG JP2K WN		GB FF		and	
BRISQUE (2012) [10]	0.965	0.929	0.982	0.964	0.828	Compressed
CORNIA (2012) [104]	0.947	0.924	0.958	0.951	0.921	Compressed
M3 (2014) [105]	0.966	0.930	0.986	0.935	0.902	Images :
HOSA (2016) [103]	0.954	0.935	0.975	0.954	0.954	
FRIQUEE (2017) [90]	0.947	0.919	0.983	0.937	0.884	
dipIQ (2017) [82]	0.969	0.956	0.975	0.940	-	
WaDIQaM (2018) [35]	0.953	0.942	0.982	0.938	0.923	Global
DB-CNN (2020) [64]	0.972	0.955	0.980	0.935	0.930	Distortion
HyperIQA (2020) [65]	0.961	0.949	0.982	0.926	0.934	
NLNet	0.979	0.958	0.990	0.964	0.941	Non-local
DI CC		Global L	Distortio	n	Local Distortion	Recurrence
FLCC	JPEG	JP2K	WN	GB	FF	
BRISQUE (2012) [10]	0.971	0.940	0.989	0.965	0.894	(c) (g)
CORNIA (2012) [104]	0.962	0.944	0.974	0.961	0.943	Local
M3 (2014) [105]	0.977	0.945	0.992	0.947	0.920	Distortion 💊 🦳
HOSA (2016) [103]			0.000	0.067	0.967	
	0.967	0.949	0.983	0.907	0.207	
FRIQUEE (2017) [90]	0.967	0.949 0.935	0.983 0.991	0.949	0.936	
FRIQUEE (2017) [90] dipIQ (2017) [82]	0.967 0.955 0.980	0.949 0.935 0.964	0.983 0.991 0.983	0.949 0.948	0.936	
FRIQUEE (2017) [90] dipIQ (2017) [82] DB-CNN (2020) [64]	0.967 0.955 0.980 0.986	0.949 0.935 0.964 0.967	0.983 0.991 0.983 0.988	0.949 0.948 0.956	0.936 - 0.961	
FRIQUEE (2017) [90] dipIQ (2017) [82] DB-CNN (2020) [64] NLNet	0.967 0.955 0.980 0.986 0.986	0.949 0.935 0.964 0.967 0.961	0.983 0.991 0.983 0.988 0.988	0.949 0.948 0.956 0.964	0.936 - 0.961 0.951	(d) (h) (h) (h) (h) (h) (h) (h) (h) (h) (h

Image Credit: LIVE Database

© Philips - Confidential

Figure (e) are reference images from the LIVE database.

Table 4.5: The average SRCC and PLCC results of the individual distortion type on the CSIQ database. Top two results are highlighted in bold.

SRCC JPEG JP2K WN G	B PN CC
BRISQUE (2012) [10] 0.806 0.840 0.723 0.8	820 0.378 0.804
CORNIA (2012) [104] 0.513 0.831 0.664 0.8	336 0.493 0.462
M3 (2014) [105] 0.740 0.911 0.741 0.8	368 0.663 0.770
HOSA (2016) [103] 0.733 0.818 0.604 0.8	341 0.500 0.716 Global
FRIQUEE (2017) [90] 0.869 0.846 0.748 0.8	870 0.753 0.838 Dictortion
dipIQ (2017) [82] 0.936 0.944 0.904 0.9	Distortion
MEON (2018) [71] 0.948 0.898 0.951 0.9	918
WaDIQaM (2018) [35] 0.853 0.947 0.974 0.9	979 0.882 0.923
DB-CNN (2020) [64] 0.940 0.953 0.948 0.9	947 0.940 0.870
NOISE-Related HyperIQA (2020) [65] 0.934 0.966 0.927 0.9	0.021 0.874
Distortions NLNet 0.972 0.963 0.965 0.9	955 0.969 0.968
PLCC JPEG JPEK WN C	P IN CC
BRISQUE (2012) [10] 0.828 0.887 0.742 0.8	891 0.496 0.835
CORNIA (2012) [104] 0.563 0.883 0.687 0.9	004 0.632 0.543
M3 (2014) [105] 0.768 0.928 0.728 0.9	917 0.717 0.787
HOSA (2016) [103] 0.759 0.899 0.656 0.9	912 0.601 0.744
FRIQUEE (2017) [90] 0.885 0.883 0.778 0.9	905 0.769 0.864
dipIQ (2017) [82] 0.975 0.959 0.927 0.9	958
MEON (2018) [71] 0.979 0.925 0.958 0.9	946
DB-CNN (2020) [64] 0.982 0.971 0.950 0.9	0.950 0.895
NLNet 0.991 0.976 0.967 0.97	746 0.966 0.969

(b) (c) (d) (a) (e) (f) (g) (h)

Figure 4.9: Demonstrations of the global distortions (b/f: GB, c/g: CC, d/h: PN) contaminating the Statue of Liberty and George Rogers Clark Memorial images. Figure (a) and Figure (e) are reference images from the CSIQ database.

Table 4.6: The average SRCC results of the individual distortion type on the TID2013database. Top two results are highlighted in bold.

SRCC	Distortion Type	BRISQUE [10]	FRIQUEE [90]	HOSA [103]	MEON [71]	M3 [105]	DB-CNN [64]	CORNIA [104]	NLNet
	Additive Gaussian noise	0.711	0.730	0.833 18	4%13	0.766	0.790	0.692	0.917
	Lossy compression of noisy images	0.609	0.641	0.838	0.772	0.692	0.860 ↑7 .	5% 0.712	0.935
	Additive noise in color components	0.432	0.573	0.551	0.722	2.8%	0.700	0.137	0.850
	Comfort noise	0.196	0.318	0.622	0.406	0.353	0.752	.8% ⁶¹⁷	0.870
	Contrast change	-0.001	0.585	0.362	0.252	0.155	0.548	0.254	0.793
	Change of color saturation	0.003	0.589	0.045	0.684	-0.199	0.631	0.169	0.827
	Spatially correlated noise	0.746	0.866	0.842	0.926 13	.20%2	0.826	0.741	0.958
	High frequency noise	0.842	0.847	0.897	0.911	.0%00	0.879	0.815	0.921
	Impulse noise	0.765	0.730	0.809	0.901 1	.20/38	0.708	0.616	0.913
Global	Quantization noise	0.662	0.764	0.815	0.888	10,832	0.825	0.661	0.929
Distortion	Gaussian blur	0.871	0.881	0.883	0.887	0.896	0.859	0.850	0.912
	Image denoising	0.612	0.839	0.854	0.797	0.709	0.865 1.	7% 0.764	0.882
	JPEG compression	0.764	0.813	0.891	0.850	0.844	0.894 1	1%0.797	0.905
	JPEG 2000 compression	0.745	0.831	0.919 ↑ 🕇	.1%891	0.885	0.916	0.846	0.930
	Multiplicative Gaussian noise	0.717	0.704	0.768	0.849 1 5	.5%/38	0.711	0.593	0.904
	Image color quantization with dither	0.831	0.768	0.896	0.857	0.908	0.833	0.683	0.911
	Sparse sampling and reconstruction	0.807	0.891	0.909	0.855	0.893	0.902	0.865	0.940
	Chromatic aberrations	0.615	0.737	0.753	0.779	0.570	0.732	0.696	0.773
	Masked noise	0.252	0.345	0.468	0.728	0.577	0.646	0.451	0.700
	Mean shift (intensity shift)	0.219	0.254	0.211	0.177	0.119	-0.009	0.232	0.358
	JPEG transmission errors	0.301	0.498	0.730	0.746	0.375	0.772 ↑3 .	3%0.694	0.805
Local	JPEG 2000 transmission errors	0.748	0.660	0.710	0.716	0.718	0.773 1	292,686	0.875
Distortion	Non eccentricity pattern noise	0.269	0.076	0.242	0.116	0.173	0.270	4 600,200	0.616
	Local bock-wise distortions with different intensity	0.207	0.032	0.268	0.500	0.379	0.444	0.027	0.493

Noise and Compression-Related Distortions

Figure 4.10: Demonstrations of the local distortions (b/g/l: JPEG transmission errors, c/h/m: JPEG2000 transmission errors, d/i/n: non eccentricity pattern noise, e/j/o: local block-wise distortions of different intensity). Figure (a), Figure (f), and Figure (k) are reference images from the TID2013 database.

Image Credit: TID2013 Database

Table 4.7: The average SRCC results of the individual distortion type on the KADID-10k database. The local distortions are highlighted in blue and the top two results are highlighted in bold.

Dis	tortion Type	BLIINDS-II [91]	BRISQUE [10]	ILNIQE [102]	CORNIA [104]	HOSA [103]	WaDIQaM [35]	NLNet
	Lens blur	0.781	0.674	0.846	0.811	0.715	0.730	0.914
Blurs	Gaussian blur	0.880	0.812	0.883	0.866	0.852	0.879	0.914
	Motion blur	0.482	0.423	0.779	0.532	0.652	0.730	0.899
	Color diffusion	0.572	0.544	0.678	0.243	0.727	0.833	0.916
	Color saturation 2	0.602	0.375	0.677	0.120	0.841	0.836	0.909
Color distortions	Color quantization	0.670	0.667	0.676	0.323	0.662	0.806	0.853
	Color shift	-0.139	-0.182	0.090	-0.002	0.050	0.421	0.777
	Color saturation 1	0.091	0.071	0.027	_0_019	0.216	0.148	0.604
	JPEG compression	0.414	0.782	0.804 ^6	.2%0.556	0.582	0.530	0.866
Compression	JPEG 2000 compression	0.655	0.516	0.790 16	.3% ^{0.342}	0.608	0.539	0.853
	Denoise	0.457	0.221	0.856 19	.7%0.229	0.247	0.765	0.953
	White noise in color component	0.757	0.718	0.841	0.418	0.745 1	.1% 0.925	0.936
Noise	Multiplicative noise	0.702	0.674	0.682	0.306	0.776 15	.0%0.884	0.934
	Impulse noise	0.547	-0.543	0.808	0.219	0.254 1	0.2% .814	0.916
	White Gaussian noise	0.628	0.708	0.776	0.357	0.680 11	.7% 0.897	0.914
	Brighten	0.458	0.575	0.301	0.227	0.753	0.685	0.822
Brightness change	Darken	0.439	0.405	0.436	0.206	0.744	0.272	0.647
	Mean Shift	0.112	0.144	0.315	0.122	0.591	0.348	0.335
	Jitter	0.629	0.672	0.441	0.719	0.391	0.778	0.899
	Pixelate	0.196	0.648	0.577	0.587	0.702	0.700	0.814
Spatial distortions	Quantization	0.781	0.714	0.571	0.259	0.681	0.735	0.791
	Color block	-0.020	0.067	0.003	0.094	0.388	0.160	0.440
	Non-eccentricity patch	0.083	0.191	0.218	0.121	0.461	0.348	0.433
Sharphass and contrast	High sharpen	-0.015	0.361	0.681	0.114	0.230	0.558	0.932
sharphess and contrast	Contrast change	0.062	0.105	0.072	0.125	0.452	0.421	0.513

Figure 4.11: Demonstrations of the local distortions (b/e/h: non-eccentricity patch and c/f/i: color block). Figure (a), Figure (d), and Figure (g) are reference images from the KADID-10k database.

Takeaways and Future Work

✓ Non-local & Local Modeling

(1) The Non-local Modeling is complementary to traditional local methods.

(2) CNN's Local Modeling features are effective and robust.

✓ Global & Local Distortions

(1) Handle a wide variety of <u>Global Distortions</u>: globally and uniformly distributed with non-local recurrences.

(2) Maintain sensitivity to Local Distortions: local nonuniform-distributed distortions in a local region.

(3) Better assess Noisy and Compressed Images quality.

✓ Generalization Capability Cross-Dataset Setting → High Generalization Capability

✓ Future Work Non-local Statistics [1, 2]; PGC \rightarrow UGC \rightarrow AIGC: Quality Assessment of AI Generated Content